161 research outputs found

    Screening for coping style increases the power of gene expression studies

    Get PDF
    Background: Individuals of many vertebrate species show different stress coping styles and these have a striking influence on how gene expression shifts in response to a variety of challenges. Principal Findings: This is clearly illustrated by a study in which common carp displaying behavioural predictors of different coping styles (characterised by a proactive, adrenaline-based or a reactive, cortisol-based response) were subjected to inflammatory challenge and specific gene transcripts measured in individual brains. Proactive and reactive fish differed in baseline gene expression and also showed diametrically opposite responses to the challenge for 80% of the genes investigated. Significance: Incorporating coping style as an explanatory variable can account for some the unexplained variation that is common in gene expression studies, can uncover important effects that would otherwise have passed unnoticed and greatly enhances the interpretive value of gene expression data

    Boldness Predicts Social Status in Zebrafish (Danio rerio)

    Get PDF
    This study explored if boldness could be used to predict social status. First, boldness was assessed by monitoring individual zebrafish behaviour in (1) an unfamiliar barren environment with no shelter (open field), (2) the same environment when a roof was introduced as a shelter, and (3) when the roof was removed and an unfamiliar object (Lego® brick) was introduced. Next, after a resting period of minimum one week, social status of the fish was determined in a dyadic contest and dominant/subordinate individuals were determined as the winner/loser of two consecutive contests. Multivariate data analyses showed that males were bolder than females and that the behaviours expressed by the fish during the boldness tests could be used to predict which fish would later become dominant and subordinate in the ensuing dyadic contest. We conclude that bold behaviour is positively correlated to dominance in zebrafish and that boldness is not solely a consequence of social dominance

    Integrating personality research and animal contest theory: aggressiveness in the green swordtail <i>Xiphophorus helleri</i>

    Get PDF
    &lt;p&gt;Aggression occurs when individuals compete over limiting resources. While theoretical studies have long placed a strong emphasis on context-specificity of aggression, there is increasing recognition that consistent behavioural differences exist among individuals, and that aggressiveness may be an important component of individual personality. Though empirical studies tend to focus on one aspect or the other, we suggest there is merit in modelling both within-and among-individual variation in agonistic behaviour simultaneously. Here, we demonstrate how this can be achieved using multivariate linear mixed effect models. Using data from repeated mirror trials and dyadic interactions of male green swordtails, &lt;i&gt;Xiphophorus helleri&lt;/i&gt;, we show repeatable components of (co)variation in a suite of agonistic behaviour that is broadly consistent with a major axis of variation in aggressiveness. We also show that observed focal behaviour is dependent on opponent effects, which can themselves be repeatable but were more generally found to be context specific. In particular, our models show that within-individual variation in agonistic behaviour is explained, at least in part, by the relative size of a live opponent as predicted by contest theory. Finally, we suggest several additional applications of the multivariate models demonstrated here. These include testing the recently queried functional equivalence of alternative experimental approaches, (e. g., mirror trials, dyadic interaction tests) for assaying individual aggressiveness.&lt;/p&gt

    Can we predict personality in fish? searching for consistency over time and across contexts

    Get PDF
    The interest in animal personality, broadly defined as consistency of individual behavioural traits over time and across contexts, has increased dramatically over the last years. Individual differences in behaviour are no longer recognised as noise around a mean but rather as adaptive variation and thus, essentially, raw material for evolution. Animal personality has been considered evolutionary conserved and has been shown to be present in all vertebrates including fish. Despite the importance of evolutionary and comparative aspects in this field, few studies have actually documented consistency across situations in fish. In addition, most studies are done with individually housed fish which may pose additional challenges when interpreting data from social species. Here, we investigate, for the first time in fish, whether individual differences in behavioural responses to a variety of challenges are consistent over time and across contexts using both individual and grouped-based tests. Twenty-four juveniles of Gilthead seabream Sparus aurata were subjected to three individual-based tests: feed intake recovery in a novel environment, novel object and restraining and to two group-based tests: risk-taking and hypoxia. Each test was repeated twice to assess consistency of behavioural responses over time. Risk taking and escape behaviours during restraining were shown to be significantly consistent over time. In addition, consistency across contexts was also observed: individuals that took longer to recover feed intake after transfer into a novel environment exhibited higher escape attempts during a restraining test and escaped faster from hypoxia conditions. These results highlight the possibility to predict behaviour in groups from individual personality traits.European Commission [265957 COPEWELL]; European Social Fund of Andalusia; Foundation for Science and Technology, Portugal [SFRH/BPD/77210/2011]info:eu-repo/semantics/publishedVersio

    Feeding Behaviour, Swimming Activity and Boldness Explain Variation in Feed Intake and Growth of Sole (Solea solea) Reared in Captivity

    Get PDF
    The major economic constraint for culturing sole (Solea solea) is its slow and variable growth. The objective was to study the relationship between feed intake/efficiency, growth, and (non-) feeding behaviour of sole. Sixteen juveniles with an average (SD) growth of 2.7 (1.9) g/kg0.8/d were selected on their growth during a 4-week period in which they were housed communally with 84 other fish. Selected fish were housed individually during a second 4-week period to measure individual feed intake, growth, and behaviour. Fish were hand-fed three times a day during the dark phase of the day until apparent satiation. During six different days, behaviour was recorded twice daily during 3 minutes by direct observations. Total swimming activity, frequency of burying and of escapes were recorded. At the beginning and end of the growth period, two sequential behavioural tests were performed: “Novel Environment” and “Light Avoidance”. Fish housed individually still exhibited pronounced variation in feed intake (CV = 23%), growth (CV = 25%) and behavior (CV = 100%). Differences in feed intake account for 79% of the observed individual differences in growth of sole. Fish with higher variation in feed intake between days and between meals within days had significantly a lower total feed intake (r = −0.65 and r = −0.77) and growth. Active fish showed significantly higher feed intake (r = 0.66) and growth (r = 0.58). Boldness during both challenge tests was related to fast growth: (1) fish which reacted with a lower latency time to swim in a novel environment had significantly higher feed intake (r = −0.55) and growth (r = −0.66); (2) fish escaping during the light avoidance test tended to show higher feed intake (P<0.1) and had higher growth (P<0.05). In conclusion, feeding consistency, swimming activity in the tank, and boldness during behavioral tests are related to feed intake and growth of sole in captivity

    Evoked potentials in the Atlantic cod following putatively innocuous and putatively noxious electrical stimulation: a minimally invasive approach

    Get PDF
    Aspects of peripheral and central nociception have previously been studied through recording of somatosensory evoked potentials (SEPs) to putative noxious stimuli in specific brain regions in a few freshwater fish species. In the present study, we describe a novel, minimally invasive method for recording SEPs from the central nervous system of the Atlantic cod (Gadus morhua). Cutaneous electric stimulation of the tail in 15 fish elicited SEPs at all stimulus intensities (2, 5, 10 and 20 mA) with quantitative properties corresponding to stimulus intensity. In contrast to previous fish studies, the methodological approach used in Atlantic cod in the current study uncovered a number of additional responses that could originate from multiple brain regions. Several of these responses were specific to stimulation at the highest stimulus intensities, possibly representing qualitative differences in central processing between somatosensory and nociceptive stimuli

    Heritable Differences in Schooling Behavior among Threespine Stickleback Populations Revealed by a Novel Assay

    Get PDF
    Identifying the proximate and ultimate mechanisms of social behavior remains a major goal of behavioral biology. In particular, the complex social interactions mediating schooling behavior have long fascinated biologists, leading to theoretical and empirical investigations that have focused on schooling as a group-level phenomenon. However, methods to examine the behavior of individual fish within a school are needed in order to investigate the mechanisms that underlie both the performance and the evolution of schooling behavior. We have developed a technique to quantify the schooling behavior of an individual in standardized but easily manipulated social circumstances. Using our model school assay, we show that threespine sticklebacks (Gasterosteus aculeatus) from alternative habitats differ in behavior when tested in identical social circumstances. Not only do marine sticklebacks show increased association with the model school relative to freshwater benthic sticklebacks, they also display a greater degree of parallel swimming with the models. Taken together, these data indicate that marine sticklebacks exhibit a stronger tendency to school than benthic sticklebacks. We demonstrate that these population-level differences in schooling tendency are heritable and are shared by individuals within a population even when they have experienced mixed-population housing conditions. Finally, we begin to explore the stimuli that elicit schooling behavior in these populations. Our data suggest that the difference in schooling tendency between marine and benthic sticklebacks is accompanied by differential preferences for social vs. non-social and moving vs. stationary shelter options. Our study thus provides novel insights into the evolution of schooling behavior, as well as a new experimental approach to investigate the genetic and neural mechanisms that underlie this complex social behavior

    The female perspective of personality in a wild songbird: repeatable aggressiveness relates to exploration behaviour

    Get PDF
    ABSTRACT: Males often express traits that improve competitive ability, such as aggressiveness. Females also express such traits but our understanding about why is limited. Intraspecific aggression between females might be used to gain access to reproductive resources but simultaneously incurs costs in terms of energy and time available for reproductive activities, resulting in a trade-off. Although consistent individual differences in female behaviour (i.e. personality) like aggressiveness are likely to influence these reproductive trade-offs, little is known about the consistency of aggressiveness in females. To quantify aggression we presented a female decoy to free-living female great tits (Parus major) during the egg-laying period, and assessed whether they were consistent in their response towards this decoy. Moreover, we assessed whether female aggression related to consistent individual differences in exploration behaviour in a novel environment. We found that females consistently differed in aggressiveness, although first-year females were on average more aggressive than older females. Moreover, conform life history theory predictions, ‘fast’ exploring females were more aggressive towards the decoy than ‘slow’ exploring females. Given that personality traits are often heritable, and correlations between behaviours can constrain short term adaptive evolution, our findings highlight the importance of studying female aggression within a multivariate behavioural framework

    Increased noise levels have different impacts on the anti-predator behaviour of two sympatric fish species.

    Get PDF
    types: Journal ArticleCopyright: © 2014 Voellmy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic) factors can influence predator-prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour), compared with control conditions (playback of recordings from the same harbours without ship noise), affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus) and the European minnow (Phoxinus phoxinus), which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences.University of BristolBasler Stiftung für Biologische ForschungDefr
    corecore